Metamath Proof Explorer


Theorem orbitclmpt

Description: Version of orbitcl using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses orbitclmpt.1 _ x B
orbitclmpt.2 _ x D
orbitclmpt.3 Z = rec x V C A ω
orbitclmpt.4 x = B C = D
Assertion orbitclmpt B Z D V D Z

Proof

Step Hyp Ref Expression
1 orbitclmpt.1 _ x B
2 orbitclmpt.2 _ x D
3 orbitclmpt.3 Z = rec x V C A ω
4 orbitclmpt.4 x = B C = D
5 elex B Z B V
6 eqid x V C = x V C
7 1 2 4 6 fvmptf B V D V x V C B = D
8 5 7 sylan B Z D V x V C B = D
9 orbitcl B rec x V C A ω x V C B rec x V C A ω
10 3 eleq2i B Z B rec x V C A ω
11 3 eleq2i x V C B Z x V C B rec x V C A ω
12 9 10 11 3imtr4i B Z x V C B Z
13 12 adantr B Z D V x V C B Z
14 8 13 eqeltrrd B Z D V D Z