Metamath Proof Explorer


Theorem orddif0suc

Description: For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of Schloeder p. 2. (Contributed by RP, 17-Jan-2025)

Ref Expression
Assertion orddif0suc ABOrdBBsucA=B=sucA

Proof

Step Hyp Ref Expression
1 simpr ABOrdBOrdB
2 ordelon OrdBABAOn
3 2 ancoms ABOrdBAOn
4 ordeldifsucon OrdBAOncBsucAcBAc
5 1 3 4 syl2anc ABOrdBcBsucAcBAc
6 5 biancomd ABOrdBcBsucAAccB
7 ordelon OrdBcBcOn
8 7 ad2ant2l ABOrdBAccBcOn
9 8 ex ABOrdBAccBcOn
10 9 pm4.71rd ABOrdBAccBcOnAccB
11 df-an cOnAccB¬cOn¬AccB
12 10 11 bitrdi ABOrdBAccB¬cOn¬AccB
13 6 12 bitr2d ABOrdB¬cOn¬AccBcBsucA
14 13 con1bid ABOrdB¬cBsucAcOn¬AccB
15 14 albidv ABOrdBc¬cBsucAccOn¬AccB
16 eq0 BsucA=c¬cBsucA
17 df-ral cOn¬AccBccOn¬AccB
18 15 16 17 3bitr4g ABOrdBBsucA=cOn¬AccB
19 ordnexbtwnsuc ABOrdBcOn¬AccBB=sucA
20 18 19 sylbid ABOrdBBsucA=B=sucA