| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  Ord  𝐵 ) | 
						
							| 2 |  | ordelon | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  On ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  𝐴  ∈  On ) | 
						
							| 4 |  | ordeldifsucon | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  On )  →  ( 𝑐  ∈  ( 𝐵  ∖  suc  𝐴 )  ↔  ( 𝑐  ∈  𝐵  ∧  𝐴  ∈  𝑐 ) ) ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( 𝑐  ∈  ( 𝐵  ∖  suc  𝐴 )  ↔  ( 𝑐  ∈  𝐵  ∧  𝐴  ∈  𝑐 ) ) ) | 
						
							| 6 | 5 | biancomd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( 𝑐  ∈  ( 𝐵  ∖  suc  𝐴 )  ↔  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 7 |  | ordelon | ⊢ ( ( Ord  𝐵  ∧  𝑐  ∈  𝐵 )  →  𝑐  ∈  On ) | 
						
							| 8 | 7 | ad2ant2l | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  ∧  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) )  →  𝑐  ∈  On ) | 
						
							| 9 | 8 | ex | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  →  𝑐  ∈  On ) ) | 
						
							| 10 | 9 | pm4.71rd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  ↔  ( 𝑐  ∈  On  ∧  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 11 |  | df-an | ⊢ ( ( 𝑐  ∈  On  ∧  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) )  ↔  ¬  ( 𝑐  ∈  On  →  ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  ↔  ¬  ( 𝑐  ∈  On  →  ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 13 | 6 12 | bitr2d | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ¬  ( 𝑐  ∈  On  →  ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) )  ↔  𝑐  ∈  ( 𝐵  ∖  suc  𝐴 ) ) ) | 
						
							| 14 | 13 | con1bid | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ¬  𝑐  ∈  ( 𝐵  ∖  suc  𝐴 )  ↔  ( 𝑐  ∈  On  →  ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 15 | 14 | albidv | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ∀ 𝑐 ¬  𝑐  ∈  ( 𝐵  ∖  suc  𝐴 )  ↔  ∀ 𝑐 ( 𝑐  ∈  On  →  ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 16 |  | eq0 | ⊢ ( ( 𝐵  ∖  suc  𝐴 )  =  ∅  ↔  ∀ 𝑐 ¬  𝑐  ∈  ( 𝐵  ∖  suc  𝐴 ) ) | 
						
							| 17 |  | df-ral | ⊢ ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  ↔  ∀ 𝑐 ( 𝑐  ∈  On  →  ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 18 | 15 16 17 | 3bitr4g | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ( 𝐵  ∖  suc  𝐴 )  =  ∅  ↔  ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 19 |  | ordnexbtwnsuc | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  →  𝐵  =  suc  𝐴 ) ) | 
						
							| 20 | 18 19 | sylbid | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ( 𝐵  ∖  suc  𝐴 )  =  ∅  →  𝐵  =  suc  𝐴 ) ) |