Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → Ord 𝐵 ) |
2 |
|
ordelon |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → 𝐴 ∈ On ) |
4 |
|
ordeldifsucon |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ On ) → ( 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ( 𝑐 ∈ 𝐵 ∧ 𝐴 ∈ 𝑐 ) ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ( 𝑐 ∈ 𝐵 ∧ 𝐴 ∈ 𝑐 ) ) ) |
6 |
5
|
biancomd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
7 |
|
ordelon |
⊢ ( ( Ord 𝐵 ∧ 𝑐 ∈ 𝐵 ) → 𝑐 ∈ On ) |
8 |
7
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) ∧ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ On ) |
9 |
8
|
ex |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) → 𝑐 ∈ On ) ) |
10 |
9
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ↔ ( 𝑐 ∈ On ∧ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
11 |
|
df-an |
⊢ ( ( 𝑐 ∈ On ∧ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ↔ ¬ ( 𝑐 ∈ On → ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
12 |
10 11
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ↔ ¬ ( 𝑐 ∈ On → ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
13 |
6 12
|
bitr2d |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ¬ ( 𝑐 ∈ On → ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ↔ 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ) ) |
14 |
13
|
con1bid |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ¬ 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ( 𝑐 ∈ On → ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
15 |
14
|
albidv |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ∀ 𝑐 ¬ 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ∀ 𝑐 ( 𝑐 ∈ On → ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
16 |
|
eq0 |
⊢ ( ( 𝐵 ∖ suc 𝐴 ) = ∅ ↔ ∀ 𝑐 ¬ 𝑐 ∈ ( 𝐵 ∖ suc 𝐴 ) ) |
17 |
|
df-ral |
⊢ ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ↔ ∀ 𝑐 ( 𝑐 ∈ On → ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
18 |
15 16 17
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ( 𝐵 ∖ suc 𝐴 ) = ∅ ↔ ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
19 |
|
ordnexbtwnsuc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) → 𝐵 = suc 𝐴 ) ) |
20 |
18 19
|
sylbid |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ( 𝐵 ∖ suc 𝐴 ) = ∅ → 𝐵 = suc 𝐴 ) ) |