| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordelord | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  Ord  𝐴 ) | 
						
							| 2 |  | ordnbtwn | ⊢ ( Ord  𝐴  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 3 | 2 | pm2.21d | ⊢ ( Ord  𝐴  →  ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 )  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 4 | 3 | expd | ⊢ ( Ord  𝐴  →  ( 𝐴  ∈  𝐵  →  ( 𝐵  ∈  suc  𝐴  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 5 | 4 | com12 | ⊢ ( 𝐴  ∈  𝐵  →  ( Ord  𝐴  →  ( 𝐵  ∈  suc  𝐴  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( Ord  𝐴  →  ( 𝐵  ∈  suc  𝐴  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) ) | 
						
							| 7 | 1 6 | mpd | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐵  ∈  suc  𝐴  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 8 |  | sucidg | ⊢ ( 𝐴  ∈  𝐵  →  𝐴  ∈  suc  𝐴 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  suc  𝐴 ) | 
						
							| 10 |  | ordelon | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  On ) | 
						
							| 11 |  | onsuc | ⊢ ( 𝐴  ∈  On  →  suc  𝐴  ∈  On ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  suc  𝐴  ∈  On ) | 
						
							| 13 |  | eleq2 | ⊢ ( 𝑐  =  suc  𝐴  →  ( 𝐴  ∈  𝑐  ↔  𝐴  ∈  suc  𝐴 ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑐  =  suc  𝐴  →  ( 𝑐  ∈  𝐵  ↔  suc  𝐴  ∈  𝐵 ) ) | 
						
							| 15 | 13 14 | anbi12d | ⊢ ( 𝑐  =  suc  𝐴  →  ( ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  ↔  ( 𝐴  ∈  suc  𝐴  ∧  suc  𝐴  ∈  𝐵 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑐  =  suc  𝐴 )  →  ( ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  ↔  ( 𝐴  ∈  suc  𝐴  ∧  suc  𝐴  ∈  𝐵 ) ) ) | 
						
							| 17 | 12 16 | rspcedv | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴  ∈  suc  𝐴  ∧  suc  𝐴  ∈  𝐵 )  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 18 | 9 17 | mpand | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( suc  𝐴  ∈  𝐵  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 19 | 7 18 | jaod | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐵  ∈  suc  𝐴  ∨  suc  𝐴  ∈  𝐵 )  →  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) ) | 
						
							| 20 |  | ralnex | ⊢ ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  ↔  ¬  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) | 
						
							| 21 | 20 | biimpi | ⊢ ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  →  ¬  ∃ 𝑐  ∈  On ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 ) ) | 
						
							| 22 | 19 21 | nsyli | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  →  ¬  ( 𝐵  ∈  suc  𝐴  ∨  suc  𝐴  ∈  𝐵 ) ) ) | 
						
							| 23 |  | ordsuci | ⊢ ( Ord  𝐴  →  Ord  suc  𝐴 ) | 
						
							| 24 | 1 23 | syl | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  Ord  suc  𝐴 ) | 
						
							| 25 |  | ordtri3 | ⊢ ( ( Ord  𝐵  ∧  Ord  suc  𝐴 )  →  ( 𝐵  =  suc  𝐴  ↔  ¬  ( 𝐵  ∈  suc  𝐴  ∨  suc  𝐴  ∈  𝐵 ) ) ) | 
						
							| 26 | 24 25 | syldan | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐵  =  suc  𝐴  ↔  ¬  ( 𝐵  ∈  suc  𝐴  ∨  suc  𝐴  ∈  𝐵 ) ) ) | 
						
							| 27 | 22 26 | sylibrd | ⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  →  𝐵  =  suc  𝐴 ) ) | 
						
							| 28 | 27 | ancoms | ⊢ ( ( 𝐴  ∈  𝐵  ∧  Ord  𝐵 )  →  ( ∀ 𝑐  ∈  On ¬  ( 𝐴  ∈  𝑐  ∧  𝑐  ∈  𝐵 )  →  𝐵  =  suc  𝐴 ) ) |