Step |
Hyp |
Ref |
Expression |
1 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
2 |
|
ordnbtwn |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
3 |
2
|
pm2.21d |
⊢ ( Ord 𝐴 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
4 |
3
|
expd |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ 𝐵 → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
5 |
4
|
com12 |
⊢ ( 𝐴 ∈ 𝐵 → ( Ord 𝐴 → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
6 |
5
|
adantl |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( Ord 𝐴 → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) ) |
7 |
1 6
|
mpd |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
8 |
|
sucidg |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐴 ) |
9 |
8
|
adantl |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ suc 𝐴 ) |
10 |
|
ordelon |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
11 |
|
onsuc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
12 |
10 11
|
syl |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → suc 𝐴 ∈ On ) |
13 |
|
eleq2 |
⊢ ( 𝑐 = suc 𝐴 → ( 𝐴 ∈ 𝑐 ↔ 𝐴 ∈ suc 𝐴 ) ) |
14 |
|
eleq1 |
⊢ ( 𝑐 = suc 𝐴 → ( 𝑐 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑐 = suc 𝐴 → ( ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ↔ ( 𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑐 = suc 𝐴 ) → ( ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ↔ ( 𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵 ) ) ) |
17 |
12 16
|
rspcedv |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵 ) → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
18 |
9 17
|
mpand |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( suc 𝐴 ∈ 𝐵 → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
19 |
7 18
|
jaod |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴 ∈ 𝐵 ) → ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) ) |
20 |
|
ralnex |
⊢ ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ↔ ¬ ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) |
21 |
20
|
biimpi |
⊢ ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) → ¬ ∃ 𝑐 ∈ On ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) ) |
22 |
19 21
|
nsyli |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) → ¬ ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴 ∈ 𝐵 ) ) ) |
23 |
|
ordsuci |
⊢ ( Ord 𝐴 → Ord suc 𝐴 ) |
24 |
1 23
|
syl |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord suc 𝐴 ) |
25 |
|
ordtri3 |
⊢ ( ( Ord 𝐵 ∧ Ord suc 𝐴 ) → ( 𝐵 = suc 𝐴 ↔ ¬ ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴 ∈ 𝐵 ) ) ) |
26 |
24 25
|
syldan |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 = suc 𝐴 ↔ ¬ ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴 ∈ 𝐵 ) ) ) |
27 |
22 26
|
sylibrd |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) → 𝐵 = suc 𝐴 ) ) |
28 |
27
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Ord 𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵 ) → 𝐵 = suc 𝐴 ) ) |