Metamath Proof Explorer


Theorem ordnexbtwnsuc

Description: For any distinct pair of ordinals, if there is no ordinal between the lesser and the greater, the greater is the successor of the lesser. Lemma 1.16 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordnexbtwnsuc ( ( 𝐴𝐵 ∧ Ord 𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴𝑐𝑐𝐵 ) → 𝐵 = suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordelord ( ( Ord 𝐵𝐴𝐵 ) → Ord 𝐴 )
2 ordnbtwn ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )
3 2 pm2.21d ( Ord 𝐴 → ( ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) )
4 3 expd ( Ord 𝐴 → ( 𝐴𝐵 → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) ) )
5 4 com12 ( 𝐴𝐵 → ( Ord 𝐴 → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) ) )
6 5 adantl ( ( Ord 𝐵𝐴𝐵 ) → ( Ord 𝐴 → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) ) )
7 1 6 mpd ( ( Ord 𝐵𝐴𝐵 ) → ( 𝐵 ∈ suc 𝐴 → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) )
8 sucidg ( 𝐴𝐵𝐴 ∈ suc 𝐴 )
9 8 adantl ( ( Ord 𝐵𝐴𝐵 ) → 𝐴 ∈ suc 𝐴 )
10 ordelon ( ( Ord 𝐵𝐴𝐵 ) → 𝐴 ∈ On )
11 onsuc ( 𝐴 ∈ On → suc 𝐴 ∈ On )
12 10 11 syl ( ( Ord 𝐵𝐴𝐵 ) → suc 𝐴 ∈ On )
13 eleq2 ( 𝑐 = suc 𝐴 → ( 𝐴𝑐𝐴 ∈ suc 𝐴 ) )
14 eleq1 ( 𝑐 = suc 𝐴 → ( 𝑐𝐵 ↔ suc 𝐴𝐵 ) )
15 13 14 anbi12d ( 𝑐 = suc 𝐴 → ( ( 𝐴𝑐𝑐𝐵 ) ↔ ( 𝐴 ∈ suc 𝐴 ∧ suc 𝐴𝐵 ) ) )
16 15 adantl ( ( ( Ord 𝐵𝐴𝐵 ) ∧ 𝑐 = suc 𝐴 ) → ( ( 𝐴𝑐𝑐𝐵 ) ↔ ( 𝐴 ∈ suc 𝐴 ∧ suc 𝐴𝐵 ) ) )
17 12 16 rspcedv ( ( Ord 𝐵𝐴𝐵 ) → ( ( 𝐴 ∈ suc 𝐴 ∧ suc 𝐴𝐵 ) → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) )
18 9 17 mpand ( ( Ord 𝐵𝐴𝐵 ) → ( suc 𝐴𝐵 → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) )
19 7 18 jaod ( ( Ord 𝐵𝐴𝐵 ) → ( ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴𝐵 ) → ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) ) )
20 ralnex ( ∀ 𝑐 ∈ On ¬ ( 𝐴𝑐𝑐𝐵 ) ↔ ¬ ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) )
21 20 biimpi ( ∀ 𝑐 ∈ On ¬ ( 𝐴𝑐𝑐𝐵 ) → ¬ ∃ 𝑐 ∈ On ( 𝐴𝑐𝑐𝐵 ) )
22 19 21 nsyli ( ( Ord 𝐵𝐴𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴𝑐𝑐𝐵 ) → ¬ ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴𝐵 ) ) )
23 ordsuci ( Ord 𝐴 → Ord suc 𝐴 )
24 1 23 syl ( ( Ord 𝐵𝐴𝐵 ) → Ord suc 𝐴 )
25 ordtri3 ( ( Ord 𝐵 ∧ Ord suc 𝐴 ) → ( 𝐵 = suc 𝐴 ↔ ¬ ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴𝐵 ) ) )
26 24 25 syldan ( ( Ord 𝐵𝐴𝐵 ) → ( 𝐵 = suc 𝐴 ↔ ¬ ( 𝐵 ∈ suc 𝐴 ∨ suc 𝐴𝐵 ) ) )
27 22 26 sylibrd ( ( Ord 𝐵𝐴𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴𝑐𝑐𝐵 ) → 𝐵 = suc 𝐴 ) )
28 27 ancoms ( ( 𝐴𝐵 ∧ Ord 𝐵 ) → ( ∀ 𝑐 ∈ On ¬ ( 𝐴𝑐𝑐𝐵 ) → 𝐵 = suc 𝐴 ) )