Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
orddisj
Next ⟩
onfr
Metamath Proof Explorer
Ascii
Unicode
Theorem
orddisj
Description:
An ordinal class and its singleton are disjoint.
(Contributed by
NM
, 19-May-1998)
Ref
Expression
Assertion
orddisj
⊢
Ord
⁡
A
→
A
∩
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
ordirr
⊢
Ord
⁡
A
→
¬
A
∈
A
2
disjsn
⊢
A
∩
A
=
∅
↔
¬
A
∈
A
3
1
2
sylibr
⊢
Ord
⁡
A
→
A
∩
A
=
∅