Metamath Proof Explorer


Theorem orddisj

Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion orddisj OrdAAA=

Proof

Step Hyp Ref Expression
1 ordirr OrdA¬AA
2 disjsn AA=¬AA
3 1 2 sylibr OrdAAA=