Metamath Proof Explorer


Theorem ordsuci

Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 6-Jun-1994) Extract and adapt from a subproof of onsuc . (Revised by BTernaryTau, 6-Jan-2025) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion ordsuci OrdAOrdsucA

Proof

Step Hyp Ref Expression
1 ordtr OrdATrA
2 suctr TrATrsucA
3 1 2 syl OrdATrsucA
4 df-suc sucA=AA
5 ordsson OrdAAOn
6 elon2 AOnOrdAAV
7 snssi AOnAOn
8 6 7 sylbir OrdAAVAOn
9 snprc ¬AVA=
10 9 biimpi ¬AVA=
11 0ss On
12 10 11 eqsstrdi ¬AVAOn
13 12 adantl OrdA¬AVAOn
14 8 13 pm2.61dan OrdAAOn
15 5 14 unssd OrdAAAOn
16 4 15 eqsstrid OrdAsucAOn
17 ordon OrdOn
18 17 a1i OrdAOrdOn
19 trssord TrsucAsucAOnOrdOnOrdsucA
20 3 16 18 19 syl3anc OrdAOrdsucA