Metamath Proof Explorer


Theorem ordtoplem

Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Hypothesis ordtoplem.1 A On suc A S
Assertion ordtoplem Ord A A A A S

Proof

Step Hyp Ref Expression
1 ordtoplem.1 A On suc A S
2 df-ne A A ¬ A = A
3 ordeleqon Ord A A On A = On
4 unon On = On
5 4 eqcomi On = On
6 id A = On A = On
7 unieq A = On A = On
8 5 6 7 3eqtr4a A = On A = A
9 8 orim2i A On A = On A On A = A
10 3 9 sylbi Ord A A On A = A
11 10 orcomd Ord A A = A A On
12 11 ord Ord A ¬ A = A A On
13 orduniorsuc Ord A A = A A = suc A
14 13 ord Ord A ¬ A = A A = suc A
15 onuni A On A On
16 eleq1a suc A S A = suc A A S
17 15 1 16 3syl A On A = suc A A S
18 12 14 17 syl6c Ord A ¬ A = A A S
19 2 18 syl5bi Ord A A A A S