Metamath Proof Explorer


Theorem ordunpr

Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion ordunpr BOnCOnBCBC

Proof

Step Hyp Ref Expression
1 eloni BOnOrdB
2 eloni COnOrdC
3 ordtri2or2 OrdBOrdCBCCB
4 1 2 3 syl2an BOnCOnBCCB
5 4 orcomd BOnCOnCBBC
6 ssequn2 CBBC=B
7 ssequn1 BCBC=C
8 6 7 orbi12i CBBCBC=BBC=C
9 5 8 sylib BOnCOnBC=BBC=C
10 unexg BOnCOnBCV
11 elprg BCVBCBCBC=BBC=C
12 10 11 syl BOnCOnBCBCBC=BBC=C
13 9 12 mpbird BOnCOnBCBC