Metamath Proof Explorer


Theorem otth

Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses otth.1 AV
otth.2 BV
otth.3 RV
Assertion otth ABR=CDSA=CB=DR=S

Proof

Step Hyp Ref Expression
1 otth.1 AV
2 otth.2 BV
3 otth.3 RV
4 df-ot ABR=ABR
5 df-ot CDS=CDS
6 4 5 eqeq12i ABR=CDSABR=CDS
7 1 2 3 otth2 ABR=CDSA=CB=DR=S
8 6 7 bitri ABR=CDSA=CB=DR=S