Metamath Proof Explorer
		
		
		
		Description:  Ordered triple theorem.  (Contributed by NM, 25-Sep-2014)  (Revised by Mario Carneiro, 26-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | otth.1 |  | 
					
						|  |  | otth.2 |  | 
					
						|  |  | otth.3 |  | 
				
					|  | Assertion | otth |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | otth.1 |  | 
						
							| 2 |  | otth.2 |  | 
						
							| 3 |  | otth.3 |  | 
						
							| 4 |  | df-ot |  | 
						
							| 5 |  | df-ot |  | 
						
							| 6 | 4 5 | eqeq12i |  | 
						
							| 7 | 1 2 3 | otth2 |  | 
						
							| 8 | 6 7 | bitri |  |