Metamath Proof Explorer


Theorem ovolval4

Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 , but here f may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval4.a φ A
ovolval4.m M = y * | f 2 A ran . f y = sum^ vol . f
Assertion ovolval4 φ vol * A = sup M * <

Proof

Step Hyp Ref Expression
1 ovolval4.a φ A
2 ovolval4.m M = y * | f 2 A ran . f y = sum^ vol . f
3 2fveq3 k = n 1 st f k = 1 st f n
4 2fveq3 k = n 2 nd f k = 2 nd f n
5 3 4 breq12d k = n 1 st f k 2 nd f k 1 st f n 2 nd f n
6 5 4 3 ifbieq12d k = n if 1 st f k 2 nd f k 2 nd f k 1 st f k = if 1 st f n 2 nd f n 2 nd f n 1 st f n
7 3 6 opeq12d k = n 1 st f k if 1 st f k 2 nd f k 2 nd f k 1 st f k = 1 st f n if 1 st f n 2 nd f n 2 nd f n 1 st f n
8 7 cbvmptv k 1 st f k if 1 st f k 2 nd f k 2 nd f k 1 st f k = n 1 st f n if 1 st f n 2 nd f n 2 nd f n 1 st f n
9 1 2 8 ovolval4lem2 φ vol * A = sup M * <