Metamath Proof Explorer


Theorem paddssat

Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion paddssat KBXAYAX+˙YA

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 eqid K=K
4 eqid joinK=joinK
5 3 4 1 2 paddval KBXAYAX+˙Y=XYpA|qXrYpKqjoinKr
6 unss XAYAXYA
7 6 biimpi XAYAXYA
8 ssrab2 pA|qXrYpKqjoinKrA
9 7 8 jctir XAYAXYApA|qXrYpKqjoinKrA
10 unss XYApA|qXrYpKqjoinKrAXYpA|qXrYpKqjoinKrA
11 9 10 sylib XAYAXYpA|qXrYpKqjoinKrA
12 11 3adant1 KBXAYAXYpA|qXrYpKqjoinKrA
13 5 12 eqsstrd KBXAYAX+˙YA