Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Ostrowski's theorem
padicval
Next ⟩
ostth2lem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
padicval
Description:
Value of the p-adic absolute value.
(Contributed by
Mario Carneiro
, 8-Sep-2014)
Ref
Expression
Hypothesis
padicval.j
⊢
J
=
q
∈
ℙ
⟼
x
∈
ℚ
⟼
if
x
=
0
0
q
−
q
pCnt
x
Assertion
padicval
⊢
P
∈
ℙ
∧
X
∈
ℚ
→
J
⁡
P
⁡
X
=
if
X
=
0
0
P
−
P
pCnt
X
Proof
Step
Hyp
Ref
Expression
1
padicval.j
⊢
J
=
q
∈
ℙ
⟼
x
∈
ℚ
⟼
if
x
=
0
0
q
−
q
pCnt
x
2
1
padicfval
⊢
P
∈
ℙ
→
J
⁡
P
=
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
3
2
fveq1d
⊢
P
∈
ℙ
→
J
⁡
P
⁡
X
=
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
⁡
X
4
eqeq1
⊢
x
=
X
→
x
=
0
↔
X
=
0
5
oveq2
⊢
x
=
X
→
P
pCnt
x
=
P
pCnt
X
6
5
negeqd
⊢
x
=
X
→
−
P
pCnt
x
=
−
P
pCnt
X
7
6
oveq2d
⊢
x
=
X
→
P
−
P
pCnt
x
=
P
−
P
pCnt
X
8
4
7
ifbieq2d
⊢
x
=
X
→
if
x
=
0
0
P
−
P
pCnt
x
=
if
X
=
0
0
P
−
P
pCnt
X
9
eqid
⊢
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
=
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
10
c0ex
⊢
0
∈
V
11
ovex
⊢
P
−
P
pCnt
X
∈
V
12
10
11
ifex
⊢
if
X
=
0
0
P
−
P
pCnt
X
∈
V
13
8
9
12
fvmpt
⊢
X
∈
ℚ
→
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
⁡
X
=
if
X
=
0
0
P
−
P
pCnt
X
14
3
13
sylan9eq
⊢
P
∈
ℙ
∧
X
∈
ℚ
→
J
⁡
P
⁡
X
=
if
X
=
0
0
P
−
P
pCnt
X