Metamath Proof Explorer


Theorem pats

Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses patoms.b B = Base K
patoms.z 0 ˙ = 0. K
patoms.c C = K
patoms.a A = Atoms K
Assertion pats K D A = x B | 0 ˙ C x

Proof

Step Hyp Ref Expression
1 patoms.b B = Base K
2 patoms.z 0 ˙ = 0. K
3 patoms.c C = K
4 patoms.a A = Atoms K
5 elex K D K V
6 fveq2 p = K Base p = Base K
7 6 1 eqtr4di p = K Base p = B
8 fveq2 p = K p = K
9 8 3 eqtr4di p = K p = C
10 9 breqd p = K 0. p p x 0. p C x
11 fveq2 p = K 0. p = 0. K
12 11 2 eqtr4di p = K 0. p = 0 ˙
13 12 breq1d p = K 0. p C x 0 ˙ C x
14 10 13 bitrd p = K 0. p p x 0 ˙ C x
15 7 14 rabeqbidv p = K x Base p | 0. p p x = x B | 0 ˙ C x
16 df-ats Atoms = p V x Base p | 0. p p x
17 1 fvexi B V
18 17 rabex x B | 0 ˙ C x V
19 15 16 18 fvmpt K V Atoms K = x B | 0 ˙ C x
20 4 19 eqtrid K V A = x B | 0 ˙ C x
21 5 20 syl K D A = x B | 0 ˙ C x