Metamath Proof Explorer


Theorem pats

Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses patoms.b B=BaseK
patoms.z 0˙=0.K
patoms.c C=K
patoms.a A=AtomsK
Assertion pats KDA=xB|0˙Cx

Proof

Step Hyp Ref Expression
1 patoms.b B=BaseK
2 patoms.z 0˙=0.K
3 patoms.c C=K
4 patoms.a A=AtomsK
5 elex KDKV
6 fveq2 p=KBasep=BaseK
7 6 1 eqtr4di p=KBasep=B
8 fveq2 p=Kp=K
9 8 3 eqtr4di p=Kp=C
10 9 breqd p=K0.ppx0.pCx
11 fveq2 p=K0.p=0.K
12 11 2 eqtr4di p=K0.p=0˙
13 12 breq1d p=K0.pCx0˙Cx
14 10 13 bitrd p=K0.ppx0˙Cx
15 7 14 rabeqbidv p=KxBasep|0.ppx=xB|0˙Cx
16 df-ats Atoms=pVxBasep|0.ppx
17 1 fvexi BV
18 17 rabex xB|0˙CxV
19 15 16 18 fvmpt KVAtomsK=xB|0˙Cx
20 4 19 eqtrid KVA=xB|0˙Cx
21 5 20 syl KDA=xB|0˙Cx