Metamath Proof Explorer


Theorem pcl0bN

Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pcl0b.a A=AtomsK
pcl0b.c U=PClK
Assertion pcl0bN KHLPAUP=P=

Proof

Step Hyp Ref Expression
1 pcl0b.a A=AtomsK
2 pcl0b.c U=PClK
3 1 2 pclssidN KHLPAPUP
4 eqimss UP=UP
5 3 4 sylan9ss KHLPAUP=P
6 ss0 PP=
7 5 6 syl KHLPAUP=P=
8 fveq2 P=UP=U
9 2 pcl0N KHLU=
10 8 9 sylan9eqr KHLP=UP=
11 10 adantlr KHLPAP=UP=
12 7 11 impbida KHLPAUP=P=