Metamath Proof Explorer


Theorem permnn

Description: The number of permutations of N - R objects from a collection of N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007)

Ref Expression
Assertion permnn R0NN!R!

Proof

Step Hyp Ref Expression
1 elfznn0 R0NR0
2 1 faccld R0NR!
3 fznn0sub R0NNR0
4 3 faccld R0NNR!
5 4 2 nnmulcld R0NNR!R!
6 elfz3nn0 R0NN0
7 faccl N0N!
8 7 nncnd N0N!
9 6 8 syl R0NN!
10 4 nncnd R0NNR!
11 2 nncnd R0NR!
12 facne0 R0R!0
13 1 12 syl R0NR!0
14 10 11 13 divcan4d R0NNR!R!R!=NR!
15 14 4 eqeltrd R0NNR!R!R!
16 bcval2 R0N(NR)=N!NR!R!
17 bccl2 R0N(NR)
18 16 17 eqeltrrd R0NN!NR!R!
19 nndivtr R!NR!R!N!NR!R!R!N!NR!R!N!R!
20 2 5 9 15 18 19 syl32anc R0NN!R!