Metamath Proof Explorer


Theorem pexmidlem3N

Description: Lemma for pexmidN . Use atom exchange hlatexch1 to swap p and q . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙=K
pexmidlem.j ˙=joinK
pexmidlem.a A=AtomsK
pexmidlem.p +˙=+𝑃K
pexmidlem.o ˙=𝑃K
pexmidlem.m M=X+˙p
Assertion pexmidlem3N KHLXApArXq˙Xq˙r˙ppX+˙˙X

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙=K
2 pexmidlem.j ˙=joinK
3 pexmidlem.a A=AtomsK
4 pexmidlem.p +˙=+𝑃K
5 pexmidlem.o ˙=𝑃K
6 pexmidlem.m M=X+˙p
7 simp1 KHLXApArXq˙Xq˙r˙pKHLXApA
8 simp2l KHLXApArXq˙Xq˙r˙prX
9 simp2r KHLXApArXq˙Xq˙r˙pq˙X
10 simpl1 KHLXApArXq˙XKHL
11 simpl2 KHLXApArXq˙XXA
12 3 5 polssatN KHLXA˙XA
13 10 11 12 syl2anc KHLXApArXq˙X˙XA
14 simprr KHLXApArXq˙Xq˙X
15 13 14 sseldd KHLXApArXq˙XqA
16 simpl3 KHLXApArXq˙XpA
17 simprl KHLXApArXq˙XrX
18 11 17 sseldd KHLXApArXq˙XrA
19 1 2 3 4 5 6 pexmidlem1N KHLXArXq˙Xqr
20 19 3adantl3 KHLXApArXq˙Xqr
21 1 2 3 hlatexch1 KHLqApArAqrq˙r˙pp˙r˙q
22 10 15 16 18 20 21 syl131anc KHLXApArXq˙Xq˙r˙pp˙r˙q
23 22 3impia KHLXApArXq˙Xq˙r˙pp˙r˙q
24 1 2 3 4 5 6 pexmidlem2N KHLXApArXq˙Xp˙r˙qpX+˙˙X
25 7 8 9 23 24 syl13anc KHLXApArXq˙Xq˙r˙ppX+˙˙X