Metamath Proof Explorer


Theorem pfxccatin12lem4

Description: Lemma 4 for pfxccatin12 . (Contributed by Alexander van der Vekens, 30-Mar-2018) (Revised by Alexander van der Vekens, 23-May-2018)

Ref Expression
Assertion pfxccatin12lem4 L0M0NK0..^NM¬K0..^LMKLM..^LM+N-L

Proof

Step Hyp Ref Expression
1 nn0z L0L
2 nn0z M0M
3 zsubcl LMLM
4 1 2 3 syl2an L0M0LM
5 4 3adant3 L0M0NLM
6 elfzonelfzo LMK0..^NM¬K0..^LMKLM..^NM
7 6 imp LMK0..^NM¬K0..^LMKLM..^NM
8 5 7 sylan L0M0NK0..^NM¬K0..^LMKLM..^NM
9 nn0cn L0L
10 nn0cn M0M
11 zcn NN
12 npncan3 LMNLM+N-L=NM
13 9 10 11 12 syl3an L0M0NLM+N-L=NM
14 13 oveq2d L0M0NLM..^LM+N-L=LM..^NM
15 14 eleq2d L0M0NKLM..^LM+N-LKLM..^NM
16 15 adantr L0M0NK0..^NM¬K0..^LMKLM..^LM+N-LKLM..^NM
17 8 16 mpbird L0M0NK0..^NM¬K0..^LMKLM..^LM+N-L
18 17 ex L0M0NK0..^NM¬K0..^LMKLM..^LM+N-L