Metamath Proof Explorer


Theorem pfxmpt

Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfxmpt SWordAL0SSprefixL=x0..^LSx

Proof

Step Hyp Ref Expression
1 elfznn0 L0SL0
2 pfxval SWordAL0SprefixL=Ssubstr0L
3 1 2 sylan2 SWordAL0SSprefixL=Ssubstr0L
4 simpl SWordAL0SSWordA
5 1 adantl SWordAL0SL0
6 0elfz L000L
7 5 6 syl SWordAL0S00L
8 simpr SWordAL0SL0S
9 swrdval2 SWordA00LL0SSsubstr0L=x0..^L0Sx+0
10 4 7 8 9 syl3anc SWordAL0SSsubstr0L=x0..^L0Sx+0
11 nn0cn L0L
12 11 subid1d L0L0=L
13 1 12 syl L0SL0=L
14 13 oveq2d L0S0..^L0=0..^L
15 14 adantl SWordAL0S0..^L0=0..^L
16 elfzonn0 x0..^L0x0
17 nn0cn x0x
18 17 addridd x0x+0=x
19 16 18 syl x0..^L0x+0=x
20 19 fveq2d x0..^L0Sx+0=Sx
21 20 adantl SWordAL0Sx0..^L0Sx+0=Sx
22 15 21 mpteq12dva SWordAL0Sx0..^L0Sx+0=x0..^LSx
23 3 10 22 3eqtrd SWordAL0SSprefixL=x0..^LSx