Metamath Proof Explorer


Theorem pfxtrcfv

Description: A symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)

Ref Expression
Assertion pfxtrcfv WWordVWI0..^W1WprefixW1I=WI

Proof

Step Hyp Ref Expression
1 wrdfin WWordVWFin
2 1elfz0hash WFinW10W
3 1 2 sylan WWordVW10W
4 lennncl WWordVWW
5 elfz1end WW1W
6 4 5 sylib WWordVWW1W
7 3 6 jca WWordVW10WW1W
8 7 3adant3 WWordVWI0..^W110WW1W
9 fz0fzdiffz0 10WW1WW10W
10 8 9 syl WWordVWI0..^W1W10W
11 pfxfv WWordVW10WI0..^W1WprefixW1I=WI
12 10 11 syld3an2 WWordVWI0..^W1WprefixW1I=WI