Metamath Proof Explorer


Theorem phplem1

Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion phplem1 A ω B suc A A suc A B

Proof

Step Hyp Ref Expression
1 simpl A ω B suc A A ω
2 peano2 A ω suc A ω
3 enrefnn suc A ω suc A suc A
4 2 3 syl A ω suc A suc A
5 4 adantr A ω B suc A suc A suc A
6 simpr A ω B suc A B suc A
7 dif1en A ω suc A suc A B suc A suc A B A
8 1 5 6 7 syl3anc A ω B suc A suc A B A
9 nnfi A ω A Fin
10 ensymfib A Fin A suc A B suc A B A
11 1 9 10 3syl A ω B suc A A suc A B suc A B A
12 8 11 mpbird A ω B suc A A suc A B