Metamath Proof Explorer


Theorem pidlnz

Description: A principal ideal generated by a nonzero element is not the zero ideal. (Contributed by Thierry Arnoux, 11-Apr-2024)

Ref Expression
Hypotheses pidlnz.1 B=BaseR
pidlnz.2 0˙=0R
pidlnz.3 K=RSpanR
Assertion pidlnz RRingXBX0˙KX0˙

Proof

Step Hyp Ref Expression
1 pidlnz.1 B=BaseR
2 pidlnz.2 0˙=0R
3 pidlnz.3 K=RSpanR
4 simpl1 RRingXBX0˙KX=0˙RRing
5 simpl2 RRingXBX0˙KX=0˙XB
6 1 3 rspsnid RRingXBXKX
7 4 5 6 syl2anc RRingXBX0˙KX=0˙XKX
8 simpr RRingXBX0˙KX=0˙KX=0˙
9 7 8 eleqtrd RRingXBX0˙KX=0˙X0˙
10 elsni X0˙X=0˙
11 9 10 syl RRingXBX0˙KX=0˙X=0˙
12 simpl3 RRingXBX0˙KX=0˙X0˙
13 12 neneqd RRingXBX0˙KX=0˙¬X=0˙
14 11 13 pm2.65da RRingXBX0˙¬KX=0˙
15 14 neqned RRingXBX0˙KX0˙