Metamath Proof Explorer


Theorem pimgtmnff

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimgtmnff.1 xφ
pimgtmnff.2 _xA
pimgtmnff.3 φxAB
Assertion pimgtmnff φxA|−∞<B=A

Proof

Step Hyp Ref Expression
1 pimgtmnff.1 xφ
2 pimgtmnff.2 _xA
3 pimgtmnff.3 φxAB
4 2 ssrab2f xA|−∞<BA
5 4 a1i φxA|−∞<BA
6 simpr φxAxA
7 mnflt B−∞<B
8 3 7 syl φxA−∞<B
9 6 8 jca φxAxA−∞<B
10 rabid xxA|−∞<BxA−∞<B
11 9 10 sylibr φxAxxA|−∞<B
12 11 ex φxAxxA|−∞<B
13 1 12 ralrimi φxAxxA|−∞<B
14 nfrab1 _xxA|−∞<B
15 2 14 dfss3f AxA|−∞<BxAxxA|−∞<B
16 13 15 sylibr φAxA|−∞<B
17 5 16 eqssd φxA|−∞<B=A