Metamath Proof Explorer


Theorem pimltpnff

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnff.1 xφ
pimltpnff.2 _xA
pimltpnff.3 φxAB
Assertion pimltpnff φxA|B<+∞=A

Proof

Step Hyp Ref Expression
1 pimltpnff.1 xφ
2 pimltpnff.2 _xA
3 pimltpnff.3 φxAB
4 2 ssrab2f xA|B<+∞A
5 4 a1i φxA|B<+∞A
6 simpr φxAxA
7 ltpnf BB<+∞
8 3 7 syl φxAB<+∞
9 6 8 jca φxAxAB<+∞
10 rabid xxA|B<+∞xAB<+∞
11 9 10 sylibr φxAxxA|B<+∞
12 11 ex φxAxxA|B<+∞
13 1 12 ralrimi φxAxxA|B<+∞
14 nfrab1 _xxA|B<+∞
15 2 14 dfss3f AxA|B<+∞xAxxA|B<+∞
16 13 15 sylibr φAxA|B<+∞
17 5 16 eqssd φxA|B<+∞=A