Metamath Proof Explorer


Theorem pimltpnff

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnff.1 x φ
pimltpnff.2 _ x A
pimltpnff.3 φ x A B
Assertion pimltpnff φ x A | B < +∞ = A

Proof

Step Hyp Ref Expression
1 pimltpnff.1 x φ
2 pimltpnff.2 _ x A
3 pimltpnff.3 φ x A B
4 2 ssrab2f x A | B < +∞ A
5 4 a1i φ x A | B < +∞ A
6 simpr φ x A x A
7 ltpnf B B < +∞
8 3 7 syl φ x A B < +∞
9 6 8 jca φ x A x A B < +∞
10 rabid x x A | B < +∞ x A B < +∞
11 9 10 sylibr φ x A x x A | B < +∞
12 11 ex φ x A x x A | B < +∞
13 1 12 ralrimi φ x A x x A | B < +∞
14 nfrab1 _ x x A | B < +∞
15 2 14 dfss3f A x A | B < +∞ x A x x A | B < +∞
16 13 15 sylibr φ A x A | B < +∞
17 5 16 eqssd φ x A | B < +∞ = A