Metamath Proof Explorer


Theorem pj2cocli

Description: Closure of double composition of projections. (Contributed by NM, 2-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjadj2co.1 FC
pjadj2co.2 GC
pjadj2co.3 HC
Assertion pj2cocli AprojFprojGprojHAF

Proof

Step Hyp Ref Expression
1 pjadj2co.1 FC
2 pjadj2co.2 GC
3 pjadj2co.3 HC
4 1 pjfi projF:
5 2 pjfi projG:
6 3 pjfi projH:
7 4 5 6 ho2coi AprojFprojGprojHA=projFprojGprojHA
8 3 pjhcli AprojHA
9 2 pjhcli projHAprojGprojHA
10 1 pjcli projGprojHAprojFprojGprojHAF
11 8 9 10 3syl AprojFprojGprojHAF
12 7 11 eqeltrd AprojFprojGprojHAF