Metamath Proof Explorer


Theorem pjidmco

Description: A projection operator is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjidmco HCprojHprojH=projH

Proof

Step Hyp Ref Expression
1 fveq2 H=ifHCH0projH=projifHCH0
2 1 1 coeq12d H=ifHCH0projHprojH=projifHCH0projifHCH0
3 2 1 eqeq12d H=ifHCH0projHprojH=projHprojifHCH0projifHCH0=projifHCH0
4 h0elch 0C
5 4 elimel ifHCH0C
6 5 pjidmcoi projifHCH0projifHCH0=projifHCH0
7 3 6 dedth HCprojHprojH=projH