Metamath Proof Explorer


Theorem pjo

Description: The orthogonal projection. Lemma 4.4(i) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjo HCAprojHA=projA-projHA

Proof

Step Hyp Ref Expression
1 pjch1 AprojA=A
2 1 adantl HCAprojA=A
3 axpjpj HCAA=projHA+projHA
4 2 3 eqtr2d HCAprojHA+projHA=projA
5 helch C
6 5 pjcli AprojA
7 6 adantl HCAprojA
8 pjhcl HCAprojHA
9 choccl HCHC
10 pjhcl HCAprojHA
11 9 10 sylan HCAprojHA
12 hvsubadd projAprojHAprojHAprojA-projHA=projHAprojHA+projHA=projA
13 7 8 11 12 syl3anc HCAprojA-projHA=projHAprojHA+projHA=projA
14 4 13 mpbird HCAprojA-projHA=projHA
15 14 eqcomd HCAprojHA=projA-projHA