Metamath Proof Explorer


Theorem pjoml6i

Description: An equivalent of the orthomodular law. Theorem 29.13(e) of MaedaMaeda p. 132. (Contributed by NM, 30-May-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 AC
pjoml2.2 BC
Assertion pjoml6i ABxCAxAx=B

Proof

Step Hyp Ref Expression
1 pjoml2.1 AC
2 pjoml2.2 BC
3 1 choccli AC
4 3 2 chincli ABC
5 1 2 pjoml2i ABAAB=B
6 2 choccli BC
7 1 6 chub1i AAB
8 1 2 chdmm2i AB=AB
9 7 8 sseqtrri AAB
10 5 9 jctil ABAABAAB=B
11 fveq2 x=ABx=AB
12 11 sseq2d x=ABAxAAB
13 oveq2 x=ABAx=AAB
14 13 eqeq1d x=ABAx=BAAB=B
15 12 14 anbi12d x=ABAxAx=BAABAAB=B
16 15 rspcev ABCAABAAB=BxCAxAx=B
17 4 10 16 sylancr ABxCAxAx=B