Metamath Proof Explorer


Theorem pjsdi2i

Description: Chained distributive law for Hilbert space operator difference. (Contributed by NM, 30-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsdi2.1 HC
pjsdi2.2 R:
pjsdi2.3 S:
pjsdi2.4 T:
Assertion pjsdi2i RS+opT=RS+opRTprojHRS+opT=projHRS+opprojHRT

Proof

Step Hyp Ref Expression
1 pjsdi2.1 HC
2 pjsdi2.2 R:
3 pjsdi2.3 S:
4 pjsdi2.4 T:
5 coeq2 RS+opT=RS+opRTprojHRS+opT=projHRS+opRT
6 2 3 hocofi RS:
7 2 4 hocofi RT:
8 1 6 7 pjsdii projHRS+opRT=projHRS+opprojHRT
9 5 8 eqtrdi RS+opT=RS+opRTprojHRS+opT=projHRS+opprojHRT
10 coass projHRS+opT=projHRS+opT
11 coass projHRS=projHRS
12 coass projHRT=projHRT
13 11 12 oveq12i projHRS+opprojHRT=projHRS+opprojHRT
14 9 10 13 3eqtr4g RS+opT=RS+opRTprojHRS+opT=projHRS+opprojHRT