Metamath Proof Explorer


Theorem pjsdii

Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsdi.1 HC
pjsdi.2 S:
pjsdi.3 T:
Assertion pjsdii projHS+opT=projHS+opprojHT

Proof

Step Hyp Ref Expression
1 pjsdi.1 HC
2 pjsdi.2 S:
3 pjsdi.3 T:
4 2 ffvelcdmi xSx
5 3 ffvelcdmi xTx
6 1 pjaddi SxTxprojHSx+Tx=projHSx+projHTx
7 4 5 6 syl2anc xprojHSx+Tx=projHSx+projHTx
8 hosval S:T:xS+opTx=Sx+Tx
9 2 3 8 mp3an12 xS+opTx=Sx+Tx
10 9 fveq2d xprojHS+opTx=projHSx+Tx
11 1 pjfi projH:
12 11 2 hocoi xprojHSx=projHSx
13 11 3 hocoi xprojHTx=projHTx
14 12 13 oveq12d xprojHSx+projHTx=projHSx+projHTx
15 7 10 14 3eqtr4d xprojHS+opTx=projHSx+projHTx
16 2 3 hoaddcli S+opT:
17 11 16 hocoi xprojHS+opTx=projHS+opTx
18 11 2 hocofi projHS:
19 11 3 hocofi projHT:
20 hosval projHS:projHT:xprojHS+opprojHTx=projHSx+projHTx
21 18 19 20 mp3an12 xprojHS+opprojHTx=projHSx+projHTx
22 15 17 21 3eqtr4d xprojHS+opTx=projHS+opprojHTx
23 22 rgen xprojHS+opTx=projHS+opprojHTx
24 11 16 hocofi projHS+opT:
25 18 19 hoaddcli projHS+opprojHT:
26 24 25 hoeqi xprojHS+opTx=projHS+opprojHTxprojHS+opT=projHS+opprojHT
27 23 26 mpbi projHS+opT=projHS+opprojHT