Metamath Proof Explorer


Theorem pjssmi

Description: Projection meet property. Remark in Kalmbach p. 66. Also Theorem 4.5(i)->(iv) of Beran p. 112. (Contributed by NM, 26-Sep-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjssmi AHGprojGA-projHA=projGHA

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 fveq2 A=ifAA0projGA=projGifAA0
4 fveq2 A=ifAA0projHA=projHifAA0
5 3 4 oveq12d A=ifAA0projGA-projHA=projGifAA0-projHifAA0
6 fveq2 A=ifAA0projGHA=projGHifAA0
7 5 6 eqeq12d A=ifAA0projGA-projHA=projGHAprojGifAA0-projHifAA0=projGHifAA0
8 7 imbi2d A=ifAA0HGprojGA-projHA=projGHAHGprojGifAA0-projHifAA0=projGHifAA0
9 ifhvhv0 ifAA0
10 2 9 1 pjssmii HGprojGifAA0-projHifAA0=projGHifAA0
11 8 10 dedth AHGprojGA-projHA=projGHA