Metamath Proof Explorer


Theorem pjsumi

Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsumt.1 GC
pjsumt.2 HC
Assertion pjsumi AGHprojG+HA=projGA+projHA

Proof

Step Hyp Ref Expression
1 pjsumt.1 GC
2 pjsumt.2 HC
3 1 2 osumi GHG+H=GH
4 3 fveq2d GHprojG+H=projGH
5 4 fveq1d GHprojG+HA=projGHA
6 5 adantl AGHprojG+HA=projGHA
7 pjcjt2 GCHCAGHprojGHA=projGA+projHA
8 1 2 7 mp3an12 AGHprojGHA=projGA+projHA
9 8 imp AGHprojGHA=projGA+projHA
10 6 9 eqtrd AGHprojG+HA=projGA+projHA
11 10 ex AGHprojG+HA=projGA+projHA