Metamath Proof Explorer


Theorem pl42lem3N

Description: Lemma for pl42N . (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pl42lem.b B=BaseK
pl42lem.l ˙=K
pl42lem.j ˙=joinK
pl42lem.m ˙=meetK
pl42lem.o ˙=ocK
pl42lem.f F=pmapK
pl42lem.p +˙=+𝑃K
Assertion pl42lem3N KHLXBYBZBWBVBFX+˙FYFZ+˙FWFVFX+˙FY+˙FWFX+˙FY+˙FV

Proof

Step Hyp Ref Expression
1 pl42lem.b B=BaseK
2 pl42lem.l ˙=K
3 pl42lem.j ˙=joinK
4 pl42lem.m ˙=meetK
5 pl42lem.o ˙=ocK
6 pl42lem.f F=pmapK
7 pl42lem.p +˙=+𝑃K
8 simpl1 KHLXBYBZBWBVBKHL
9 simpl2 KHLXBYBZBWBVBXB
10 eqid AtomsK=AtomsK
11 1 10 6 pmapssat KHLXBFXAtomsK
12 8 9 11 syl2anc KHLXBYBZBWBVBFXAtomsK
13 simpl3 KHLXBYBZBWBVBYB
14 1 10 6 pmapssat KHLYBFYAtomsK
15 8 13 14 syl2anc KHLXBYBZBWBVBFYAtomsK
16 10 7 paddssat KHLFXAtomsKFYAtomsKFX+˙FYAtomsK
17 8 12 15 16 syl3anc KHLXBYBZBWBVBFX+˙FYAtomsK
18 simpr2 KHLXBYBZBWBVBWB
19 1 10 6 pmapssat KHLWBFWAtomsK
20 8 18 19 syl2anc KHLXBYBZBWBVBFWAtomsK
21 inss1 FX+˙FYFZFX+˙FY
22 10 7 paddss1 KHLFX+˙FYAtomsKFWAtomsKFX+˙FYFZFX+˙FYFX+˙FYFZ+˙FWFX+˙FY+˙FW
23 21 22 mpi KHLFX+˙FYAtomsKFWAtomsKFX+˙FYFZ+˙FWFX+˙FY+˙FW
24 8 17 20 23 syl3anc KHLXBYBZBWBVBFX+˙FYFZ+˙FWFX+˙FY+˙FW
25 simpr3 KHLXBYBZBWBVBVB
26 1 10 6 pmapssat KHLVBFVAtomsK
27 8 25 26 syl2anc KHLXBYBZBWBVBFVAtomsK
28 10 7 sspadd2 KHLFVAtomsKFX+˙FYAtomsKFVFX+˙FY+˙FV
29 8 27 17 28 syl3anc KHLXBYBZBWBVBFVFX+˙FY+˙FV
30 ss2in FX+˙FYFZ+˙FWFX+˙FY+˙FWFVFX+˙FY+˙FVFX+˙FYFZ+˙FWFVFX+˙FY+˙FWFX+˙FY+˙FV
31 24 29 30 syl2anc KHLXBYBZBWBVBFX+˙FYFZ+˙FWFVFX+˙FY+˙FWFX+˙FY+˙FV