Description: Lemma for pl42N . (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pl42lem.b | |
|
pl42lem.l | |
||
pl42lem.j | |
||
pl42lem.m | |
||
pl42lem.o | |
||
pl42lem.f | |
||
pl42lem.p | |
||
Assertion | pl42lem4N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pl42lem.b | |
|
2 | pl42lem.l | |
|
3 | pl42lem.j | |
|
4 | pl42lem.m | |
|
5 | pl42lem.o | |
|
6 | pl42lem.f | |
|
7 | pl42lem.p | |
|
8 | 1 2 3 4 5 6 7 | pl42lem1N | |
9 | 8 | 3impia | |
10 | 1 2 3 4 5 6 7 | pl42lem3N | |
11 | simpl1 | |
|
12 | 11 | hllatd | |
13 | simpl2 | |
|
14 | eqid | |
|
15 | 1 14 6 | pmapsub | |
16 | 12 13 15 | syl2anc | |
17 | simpl3 | |
|
18 | 1 14 6 | pmapsub | |
19 | 12 17 18 | syl2anc | |
20 | simpr2 | |
|
21 | 1 14 6 | pmapsub | |
22 | 12 20 21 | syl2anc | |
23 | simpr3 | |
|
24 | 1 14 6 | pmapsub | |
25 | 12 23 24 | syl2anc | |
26 | 14 7 | pmodl42N | |
27 | 11 16 19 22 25 26 | syl32anc | |
28 | 1 2 3 4 5 6 7 | pl42lem2N | |
29 | 27 28 | eqsstrd | |
30 | 10 29 | sstrd | |
31 | 30 | 3adant3 | |
32 | 9 31 | eqsstrd | |
33 | 32 | 3expia | |