Metamath Proof Explorer


Theorem pl42lem4N

Description: Lemma for pl42N . (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pl42lem.b B=BaseK
pl42lem.l ˙=K
pl42lem.j ˙=joinK
pl42lem.m ˙=meetK
pl42lem.o ˙=ocK
pl42lem.f F=pmapK
pl42lem.p +˙=+𝑃K
Assertion pl42lem4N KHLXBYBZBWBVBX˙˙YZ˙˙WFX˙Y˙Z˙W˙VFX˙Y˙X˙W˙Y˙V

Proof

Step Hyp Ref Expression
1 pl42lem.b B=BaseK
2 pl42lem.l ˙=K
3 pl42lem.j ˙=joinK
4 pl42lem.m ˙=meetK
5 pl42lem.o ˙=ocK
6 pl42lem.f F=pmapK
7 pl42lem.p +˙=+𝑃K
8 1 2 3 4 5 6 7 pl42lem1N KHLXBYBZBWBVBX˙˙YZ˙˙WFX˙Y˙Z˙W˙V=FX+˙FYFZ+˙FWFV
9 8 3impia KHLXBYBZBWBVBX˙˙YZ˙˙WFX˙Y˙Z˙W˙V=FX+˙FYFZ+˙FWFV
10 1 2 3 4 5 6 7 pl42lem3N KHLXBYBZBWBVBFX+˙FYFZ+˙FWFVFX+˙FY+˙FWFX+˙FY+˙FV
11 simpl1 KHLXBYBZBWBVBKHL
12 11 hllatd KHLXBYBZBWBVBKLat
13 simpl2 KHLXBYBZBWBVBXB
14 eqid PSubSpK=PSubSpK
15 1 14 6 pmapsub KLatXBFXPSubSpK
16 12 13 15 syl2anc KHLXBYBZBWBVBFXPSubSpK
17 simpl3 KHLXBYBZBWBVBYB
18 1 14 6 pmapsub KLatYBFYPSubSpK
19 12 17 18 syl2anc KHLXBYBZBWBVBFYPSubSpK
20 simpr2 KHLXBYBZBWBVBWB
21 1 14 6 pmapsub KLatWBFWPSubSpK
22 12 20 21 syl2anc KHLXBYBZBWBVBFWPSubSpK
23 simpr3 KHLXBYBZBWBVBVB
24 1 14 6 pmapsub KLatVBFVPSubSpK
25 12 23 24 syl2anc KHLXBYBZBWBVBFVPSubSpK
26 14 7 pmodl42N KHLFXPSubSpKFYPSubSpKFWPSubSpKFVPSubSpKFX+˙FY+˙FWFX+˙FY+˙FV=FX+˙FY+˙FX+˙FWFY+˙FV
27 11 16 19 22 25 26 syl32anc KHLXBYBZBWBVBFX+˙FY+˙FWFX+˙FY+˙FV=FX+˙FY+˙FX+˙FWFY+˙FV
28 1 2 3 4 5 6 7 pl42lem2N KHLXBYBZBWBVBFX+˙FY+˙FX+˙FWFY+˙FVFX˙Y˙X˙W˙Y˙V
29 27 28 eqsstrd KHLXBYBZBWBVBFX+˙FY+˙FWFX+˙FY+˙FVFX˙Y˙X˙W˙Y˙V
30 10 29 sstrd KHLXBYBZBWBVBFX+˙FYFZ+˙FWFVFX˙Y˙X˙W˙Y˙V
31 30 3adant3 KHLXBYBZBWBVBX˙˙YZ˙˙WFX+˙FYFZ+˙FWFVFX˙Y˙X˙W˙Y˙V
32 9 31 eqsstrd KHLXBYBZBWBVBX˙˙YZ˙˙WFX˙Y˙Z˙W˙VFX˙Y˙X˙W˙Y˙V
33 32 3expia KHLXBYBZBWBVBX˙˙YZ˙˙WFX˙Y˙Z˙W˙VFX˙Y˙X˙W˙Y˙V