Step |
Hyp |
Ref |
Expression |
1 |
|
pl42lem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pl42lem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
pl42lem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
pl42lem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
pl42lem.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
6 |
|
pl42lem.f |
⊢ 𝐹 = ( pmap ‘ 𝐾 ) |
7 |
|
pl42lem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
8 |
1 2 3 4 5 6 7
|
pl42lem1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( ⊥ ‘ 𝑌 ) ∧ 𝑍 ≤ ( ⊥ ‘ 𝑊 ) ) → ( 𝐹 ‘ ( ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∨ 𝑊 ) ∧ 𝑉 ) ) = ( ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( 𝐹 ‘ 𝑉 ) ) ) ) |
9 |
8
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ∧ ( 𝑋 ≤ ( ⊥ ‘ 𝑌 ) ∧ 𝑍 ≤ ( ⊥ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∨ 𝑊 ) ∧ 𝑉 ) ) = ( ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( 𝐹 ‘ 𝑉 ) ) ) |
10 |
1 2 3 4 5 6 7
|
pl42lem3N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( 𝐹 ‘ 𝑉 ) ) ⊆ ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑉 ) ) ) ) |
11 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → 𝐾 ∈ HL ) |
12 |
11
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
14 |
|
eqid |
⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) |
15 |
1 14 6
|
pmapsub |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
16 |
12 13 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
17 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
18 |
1 14 6
|
pmapsub |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
19 |
12 17 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
20 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) |
21 |
1 14 6
|
pmapsub |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑊 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
22 |
12 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑊 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
23 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → 𝑉 ∈ 𝐵 ) |
24 |
1 14 6
|
pmapsub |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑉 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
25 |
12 23 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑉 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
26 |
14 7
|
pmodl42N |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑌 ) ∈ ( PSubSp ‘ 𝐾 ) ) ∧ ( ( 𝐹 ‘ 𝑊 ) ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( PSubSp ‘ 𝐾 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑉 ) ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( 𝐹 ‘ 𝑌 ) + ( 𝐹 ‘ 𝑉 ) ) ) ) ) |
27 |
11 16 19 22 25 26
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑉 ) ) ) = ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( 𝐹 ‘ 𝑌 ) + ( 𝐹 ‘ 𝑉 ) ) ) ) ) |
28 |
1 2 3 4 5 6 7
|
pl42lem2N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( 𝐹 ‘ 𝑌 ) + ( 𝐹 ‘ 𝑉 ) ) ) ) ⊆ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( 𝑋 ∨ 𝑊 ) ∧ ( 𝑌 ∨ 𝑉 ) ) ) ) ) |
29 |
27 28
|
eqsstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) + ( 𝐹 ‘ 𝑉 ) ) ) ⊆ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( 𝑋 ∨ 𝑊 ) ∧ ( 𝑌 ∨ 𝑉 ) ) ) ) ) |
30 |
10 29
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( 𝐹 ‘ 𝑉 ) ) ⊆ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( 𝑋 ∨ 𝑊 ) ∧ ( 𝑌 ∨ 𝑉 ) ) ) ) ) |
31 |
30
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ∧ ( 𝑋 ≤ ( ⊥ ‘ 𝑌 ) ∧ 𝑍 ≤ ( ⊥ ‘ 𝑊 ) ) ) → ( ( ( ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ∩ ( 𝐹 ‘ 𝑍 ) ) + ( 𝐹 ‘ 𝑊 ) ) ∩ ( 𝐹 ‘ 𝑉 ) ) ⊆ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( 𝑋 ∨ 𝑊 ) ∧ ( 𝑌 ∨ 𝑉 ) ) ) ) ) |
32 |
9 31
|
eqsstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ∧ ( 𝑋 ≤ ( ⊥ ‘ 𝑌 ) ∧ 𝑍 ≤ ( ⊥ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∨ 𝑊 ) ∧ 𝑉 ) ) ⊆ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( 𝑋 ∨ 𝑊 ) ∧ ( 𝑌 ∨ 𝑉 ) ) ) ) ) |
33 |
32
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( ⊥ ‘ 𝑌 ) ∧ 𝑍 ≤ ( ⊥ ‘ 𝑊 ) ) → ( 𝐹 ‘ ( ( ( ( 𝑋 ∨ 𝑌 ) ∧ 𝑍 ) ∨ 𝑊 ) ∧ 𝑉 ) ) ⊆ ( 𝐹 ‘ ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( 𝑋 ∨ 𝑊 ) ∧ ( 𝑌 ∨ 𝑉 ) ) ) ) ) ) |