| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmodl42.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
| 2 |
|
pmodl42.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝐾 ∈ HL ) |
| 4 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑌 ∈ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 6 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 7 |
3 4 6
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 8 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑋 ∈ 𝑆 ) |
| 9 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 10 |
3 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 11 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑍 ∈ 𝑆 ) |
| 12 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆 ) → 𝑍 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 13 |
3 11 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑍 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 14 |
5 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑍 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 15 |
3 10 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 16 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑊 ∈ 𝑆 ) |
| 17 |
1 2
|
paddclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) → ( 𝑌 + 𝑊 ) ∈ 𝑆 ) |
| 18 |
3 4 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑌 + 𝑊 ) ∈ 𝑆 ) |
| 19 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝑆 ) → 𝑊 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 20 |
3 16 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑊 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 21 |
5 2
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑊 ⊆ ( Atoms ‘ 𝐾 ) ) → 𝑌 ⊆ ( 𝑌 + 𝑊 ) ) |
| 22 |
3 7 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑌 ⊆ ( 𝑌 + 𝑊 ) ) |
| 23 |
5 1 2
|
pmod1i |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑋 + 𝑍 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑌 + 𝑊 ) ∈ 𝑆 ) ) → ( 𝑌 ⊆ ( 𝑌 + 𝑊 ) → ( ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∩ ( 𝑌 + 𝑊 ) ) = ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) ) |
| 24 |
23
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑋 + 𝑍 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑌 + 𝑊 ) ∈ 𝑆 ) ∧ 𝑌 ⊆ ( 𝑌 + 𝑊 ) ) → ( ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∩ ( 𝑌 + 𝑊 ) ) = ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) |
| 25 |
3 7 15 18 22 24
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∩ ( 𝑌 + 𝑊 ) ) = ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) |
| 26 |
|
incom |
⊢ ( ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∩ ( 𝑌 + 𝑊 ) ) = ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 27 |
25 26
|
eqtr3di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) = ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) |
| 28 |
27
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑋 + ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) = ( 𝑋 + ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) ) |
| 29 |
|
ssinss1 |
⊢ ( ( 𝑋 + 𝑍 ) ⊆ ( Atoms ‘ 𝐾 ) → ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 30 |
15 29
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 31 |
5 2
|
paddass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ⊆ ( Atoms ‘ 𝐾 ) ) ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) = ( 𝑋 + ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) ) |
| 32 |
3 10 7 30 31
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) = ( 𝑋 + ( 𝑌 + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) ) |
| 33 |
5 2
|
paddass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑍 ⊆ ( Atoms ‘ 𝐾 ) ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 34 |
3 10 7 13 33
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 35 |
5 2
|
padd12N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑍 ⊆ ( Atoms ‘ 𝐾 ) ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 36 |
3 10 7 13 35
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 37 |
34 36
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 38 |
5 2
|
paddass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑊 ⊆ ( Atoms ‘ 𝐾 ) ) ) → ( ( 𝑋 + 𝑌 ) + 𝑊 ) = ( 𝑋 + ( 𝑌 + 𝑊 ) ) ) |
| 39 |
3 10 7 20 38
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑊 ) = ( 𝑋 + ( 𝑌 + 𝑊 ) ) ) |
| 40 |
37 39
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( ( 𝑋 + 𝑌 ) + 𝑍 ) ∩ ( ( 𝑋 + 𝑌 ) + 𝑊 ) ) = ( ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∩ ( 𝑋 + ( 𝑌 + 𝑊 ) ) ) ) |
| 41 |
|
incom |
⊢ ( ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∩ ( 𝑋 + ( 𝑌 + 𝑊 ) ) ) = ( ( 𝑋 + ( 𝑌 + 𝑊 ) ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 42 |
40 41
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( ( 𝑋 + 𝑌 ) + 𝑍 ) ∩ ( ( 𝑋 + 𝑌 ) + 𝑊 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑊 ) ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) |
| 43 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 + 𝑊 ) ∈ 𝑆 ) → ( 𝑌 + 𝑊 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 44 |
3 18 43
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑌 + 𝑊 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 45 |
1 2
|
paddclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑋 + 𝑍 ) ∈ 𝑆 ) |
| 46 |
3 8 11 45
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑋 + 𝑍 ) ∈ 𝑆 ) |
| 47 |
1 2
|
paddclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ ( 𝑋 + 𝑍 ) ∈ 𝑆 ) → ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∈ 𝑆 ) |
| 48 |
3 4 46 47
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∈ 𝑆 ) |
| 49 |
5 2
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑍 ⊆ ( Atoms ‘ 𝐾 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑍 ) ) |
| 50 |
3 10 13 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑍 ) ) |
| 51 |
5 2
|
sspadd2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑍 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 52 |
3 15 7 51
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 53 |
50 52
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → 𝑋 ⊆ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 54 |
5 1 2
|
pmod1i |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑌 + 𝑊 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∈ 𝑆 ) ) → ( 𝑋 ⊆ ( 𝑌 + ( 𝑋 + 𝑍 ) ) → ( ( 𝑋 + ( 𝑌 + 𝑊 ) ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) = ( 𝑋 + ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) ) ) |
| 55 |
54
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑌 + 𝑊 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ∈ 𝑆 ) ∧ 𝑋 ⊆ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) → ( ( 𝑋 + ( 𝑌 + 𝑊 ) ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) = ( 𝑋 + ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) ) |
| 56 |
3 10 44 48 53 55
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( 𝑋 + ( 𝑌 + 𝑊 ) ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) = ( 𝑋 + ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) ) |
| 57 |
42 56
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( ( 𝑋 + 𝑌 ) + 𝑍 ) ∩ ( ( 𝑋 + 𝑌 ) + 𝑊 ) ) = ( 𝑋 + ( ( 𝑌 + 𝑊 ) ∩ ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) ) ) |
| 58 |
28 32 57
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ( 𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆 ) ) → ( ( ( 𝑋 + 𝑌 ) + 𝑍 ) ∩ ( ( 𝑋 + 𝑌 ) + 𝑊 ) ) = ( ( 𝑋 + 𝑌 ) + ( ( 𝑋 + 𝑍 ) ∩ ( 𝑌 + 𝑊 ) ) ) ) |