| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddass.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddass.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 4 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) |
| 5 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) |
| 6 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) |
| 7 |
1 2
|
paddasslem18 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) ) → ( 𝑍 + ( 𝑌 + 𝑋 ) ) ⊆ ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 8 |
3 4 5 6 7
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 + ( 𝑌 + 𝑋 ) ) ⊆ ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 9 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 10 |
1 2
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 11 |
9 10
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 12 |
11
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑋 ) + 𝑍 ) ) |
| 14 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) ⊆ 𝐴 ) |
| 15 |
3 5 6 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑋 ) ⊆ 𝐴 ) |
| 16 |
1 2
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 + 𝑋 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 17 |
9 16
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 + 𝑋 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 18 |
3 15 4 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 19 |
13 18
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 20 |
1 2
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 21 |
9 20
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 22 |
21
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 + ( 𝑍 + 𝑌 ) ) ) |
| 24 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) |
| 25 |
3 4 5 24
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) |
| 26 |
1 2
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) → ( 𝑋 + ( 𝑍 + 𝑌 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 27 |
9 26
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) → ( 𝑋 + ( 𝑍 + 𝑌 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 28 |
3 6 25 27
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑍 + 𝑌 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 29 |
23 28
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 30 |
8 19 29
|
3sstr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) ⊆ ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 31 |
1 2
|
paddasslem18 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 32 |
30 31
|
eqssd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |