Metamath Proof Explorer


Theorem paddcom

Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion paddcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 uncom ( 𝑋𝑌 ) = ( 𝑌𝑋 )
4 3 a1i ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋𝑌 ) = ( 𝑌𝑋 ) )
5 simpl1 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝐾 ∈ Lat )
6 simpl2 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑋𝐴 )
7 simprl ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑞𝑋 )
8 6 7 sseldd ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑞𝐴 )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 9 1 atbase ( 𝑞𝐴𝑞 ∈ ( Base ‘ 𝐾 ) )
11 8 10 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) )
12 simpl3 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑌𝐴 )
13 simprr ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑟𝑌 )
14 12 13 sseldd ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑟𝐴 )
15 9 1 atbase ( 𝑟𝐴𝑟 ∈ ( Base ‘ 𝐾 ) )
16 14 15 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) )
17 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
18 9 17 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) = ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) )
19 5 11 16 18 syl3anc ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) = ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) )
20 19 breq2d ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑞𝑋𝑟𝑌 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) )
21 20 2rexbidva ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) )
22 rexcom ( ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ↔ ∃ 𝑟𝑌𝑞𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) )
23 21 22 bitrdi ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑟𝑌𝑞𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) )
24 23 rabbidv ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } = { 𝑝𝐴 ∣ ∃ 𝑟𝑌𝑞𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } )
25 4 24 uneq12d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) = ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑟𝑌𝑞𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) )
26 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
27 26 17 1 2 paddval ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋𝑌 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) )
28 26 17 1 2 paddval ( ( 𝐾 ∈ Lat ∧ 𝑌𝐴𝑋𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑟𝑌𝑞𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) )
29 28 3com23 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑟𝑌𝑞𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) )
30 25 27 29 3eqtr4d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )