Metamath Proof Explorer


Theorem paddass

Description: Projective subspace sum is associative. Equation 16.2.1 of MaedaMaeda p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses paddass.a A=AtomsK
paddass.p +˙=+𝑃K
Assertion paddass KHLXAYAZAX+˙Y+˙Z=X+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 paddass.a A=AtomsK
2 paddass.p +˙=+𝑃K
3 simpl KHLXAYAZAKHL
4 simpr3 KHLXAYAZAZA
5 simpr2 KHLXAYAZAYA
6 simpr1 KHLXAYAZAXA
7 1 2 paddasslem18 KHLZAYAXAZ+˙Y+˙XZ+˙Y+˙X
8 3 4 5 6 7 syl13anc KHLXAYAZAZ+˙Y+˙XZ+˙Y+˙X
9 hllat KHLKLat
10 1 2 paddcom KLatXAYAX+˙Y=Y+˙X
11 9 10 syl3an1 KHLXAYAX+˙Y=Y+˙X
12 11 3adant3r3 KHLXAYAZAX+˙Y=Y+˙X
13 12 oveq1d KHLXAYAZAX+˙Y+˙Z=Y+˙X+˙Z
14 1 2 paddssat KHLYAXAY+˙XA
15 3 5 6 14 syl3anc KHLXAYAZAY+˙XA
16 1 2 paddcom KLatY+˙XAZAY+˙X+˙Z=Z+˙Y+˙X
17 9 16 syl3an1 KHLY+˙XAZAY+˙X+˙Z=Z+˙Y+˙X
18 3 15 4 17 syl3anc KHLXAYAZAY+˙X+˙Z=Z+˙Y+˙X
19 13 18 eqtrd KHLXAYAZAX+˙Y+˙Z=Z+˙Y+˙X
20 1 2 paddcom KLatYAZAY+˙Z=Z+˙Y
21 9 20 syl3an1 KHLYAZAY+˙Z=Z+˙Y
22 21 3adant3r1 KHLXAYAZAY+˙Z=Z+˙Y
23 22 oveq2d KHLXAYAZAX+˙Y+˙Z=X+˙Z+˙Y
24 1 2 paddssat KHLZAYAZ+˙YA
25 3 4 5 24 syl3anc KHLXAYAZAZ+˙YA
26 1 2 paddcom KLatXAZ+˙YAX+˙Z+˙Y=Z+˙Y+˙X
27 9 26 syl3an1 KHLXAZ+˙YAX+˙Z+˙Y=Z+˙Y+˙X
28 3 6 25 27 syl3anc KHLXAYAZAX+˙Z+˙Y=Z+˙Y+˙X
29 23 28 eqtrd KHLXAYAZAX+˙Y+˙Z=Z+˙Y+˙X
30 8 19 29 3sstr4d KHLXAYAZAX+˙Y+˙ZX+˙Y+˙Z
31 1 2 paddasslem18 KHLXAYAZAX+˙Y+˙ZX+˙Y+˙Z
32 30 31 eqssd KHLXAYAZAX+˙Y+˙Z=X+˙Y+˙Z