| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmodl42.s |
|- S = ( PSubSp ` K ) |
| 2 |
|
pmodl42.p |
|- .+ = ( +P ` K ) |
| 3 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> K e. HL ) |
| 4 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> Y e. S ) |
| 5 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 6 |
5 1
|
psubssat |
|- ( ( K e. HL /\ Y e. S ) -> Y C_ ( Atoms ` K ) ) |
| 7 |
3 4 6
|
syl2anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> Y C_ ( Atoms ` K ) ) |
| 8 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> X e. S ) |
| 9 |
5 1
|
psubssat |
|- ( ( K e. HL /\ X e. S ) -> X C_ ( Atoms ` K ) ) |
| 10 |
3 8 9
|
syl2anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> X C_ ( Atoms ` K ) ) |
| 11 |
|
simprl |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> Z e. S ) |
| 12 |
5 1
|
psubssat |
|- ( ( K e. HL /\ Z e. S ) -> Z C_ ( Atoms ` K ) ) |
| 13 |
3 11 12
|
syl2anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> Z C_ ( Atoms ` K ) ) |
| 14 |
5 2
|
paddssat |
|- ( ( K e. HL /\ X C_ ( Atoms ` K ) /\ Z C_ ( Atoms ` K ) ) -> ( X .+ Z ) C_ ( Atoms ` K ) ) |
| 15 |
3 10 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( X .+ Z ) C_ ( Atoms ` K ) ) |
| 16 |
|
simprr |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> W e. S ) |
| 17 |
1 2
|
paddclN |
|- ( ( K e. HL /\ Y e. S /\ W e. S ) -> ( Y .+ W ) e. S ) |
| 18 |
3 4 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( Y .+ W ) e. S ) |
| 19 |
5 1
|
psubssat |
|- ( ( K e. HL /\ W e. S ) -> W C_ ( Atoms ` K ) ) |
| 20 |
3 16 19
|
syl2anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> W C_ ( Atoms ` K ) ) |
| 21 |
5 2
|
sspadd1 |
|- ( ( K e. HL /\ Y C_ ( Atoms ` K ) /\ W C_ ( Atoms ` K ) ) -> Y C_ ( Y .+ W ) ) |
| 22 |
3 7 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> Y C_ ( Y .+ W ) ) |
| 23 |
5 1 2
|
pmod1i |
|- ( ( K e. HL /\ ( Y C_ ( Atoms ` K ) /\ ( X .+ Z ) C_ ( Atoms ` K ) /\ ( Y .+ W ) e. S ) ) -> ( Y C_ ( Y .+ W ) -> ( ( Y .+ ( X .+ Z ) ) i^i ( Y .+ W ) ) = ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) ) |
| 24 |
23
|
3impia |
|- ( ( K e. HL /\ ( Y C_ ( Atoms ` K ) /\ ( X .+ Z ) C_ ( Atoms ` K ) /\ ( Y .+ W ) e. S ) /\ Y C_ ( Y .+ W ) ) -> ( ( Y .+ ( X .+ Z ) ) i^i ( Y .+ W ) ) = ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) |
| 25 |
3 7 15 18 22 24
|
syl131anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( Y .+ ( X .+ Z ) ) i^i ( Y .+ W ) ) = ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) |
| 26 |
|
incom |
|- ( ( Y .+ ( X .+ Z ) ) i^i ( Y .+ W ) ) = ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) |
| 27 |
25 26
|
eqtr3di |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) = ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( X .+ ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) = ( X .+ ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) ) ) |
| 29 |
|
ssinss1 |
|- ( ( X .+ Z ) C_ ( Atoms ` K ) -> ( ( X .+ Z ) i^i ( Y .+ W ) ) C_ ( Atoms ` K ) ) |
| 30 |
15 29
|
syl |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( X .+ Z ) i^i ( Y .+ W ) ) C_ ( Atoms ` K ) ) |
| 31 |
5 2
|
paddass |
|- ( ( K e. HL /\ ( X C_ ( Atoms ` K ) /\ Y C_ ( Atoms ` K ) /\ ( ( X .+ Z ) i^i ( Y .+ W ) ) C_ ( Atoms ` K ) ) ) -> ( ( X .+ Y ) .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) = ( X .+ ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) ) |
| 32 |
3 10 7 30 31
|
syl13anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( X .+ Y ) .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) = ( X .+ ( Y .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) ) |
| 33 |
5 2
|
paddass |
|- ( ( K e. HL /\ ( X C_ ( Atoms ` K ) /\ Y C_ ( Atoms ` K ) /\ Z C_ ( Atoms ` K ) ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 34 |
3 10 7 13 33
|
syl13anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 35 |
5 2
|
padd12N |
|- ( ( K e. HL /\ ( X C_ ( Atoms ` K ) /\ Y C_ ( Atoms ` K ) /\ Z C_ ( Atoms ` K ) ) ) -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |
| 36 |
3 10 7 13 35
|
syl13anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |
| 37 |
34 36
|
eqtrd |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( X .+ Y ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
| 38 |
5 2
|
paddass |
|- ( ( K e. HL /\ ( X C_ ( Atoms ` K ) /\ Y C_ ( Atoms ` K ) /\ W C_ ( Atoms ` K ) ) ) -> ( ( X .+ Y ) .+ W ) = ( X .+ ( Y .+ W ) ) ) |
| 39 |
3 10 7 20 38
|
syl13anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( X .+ Y ) .+ W ) = ( X .+ ( Y .+ W ) ) ) |
| 40 |
37 39
|
ineq12d |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( ( X .+ Y ) .+ Z ) i^i ( ( X .+ Y ) .+ W ) ) = ( ( Y .+ ( X .+ Z ) ) i^i ( X .+ ( Y .+ W ) ) ) ) |
| 41 |
|
incom |
|- ( ( Y .+ ( X .+ Z ) ) i^i ( X .+ ( Y .+ W ) ) ) = ( ( X .+ ( Y .+ W ) ) i^i ( Y .+ ( X .+ Z ) ) ) |
| 42 |
40 41
|
eqtrdi |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( ( X .+ Y ) .+ Z ) i^i ( ( X .+ Y ) .+ W ) ) = ( ( X .+ ( Y .+ W ) ) i^i ( Y .+ ( X .+ Z ) ) ) ) |
| 43 |
5 1
|
psubssat |
|- ( ( K e. HL /\ ( Y .+ W ) e. S ) -> ( Y .+ W ) C_ ( Atoms ` K ) ) |
| 44 |
3 18 43
|
syl2anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( Y .+ W ) C_ ( Atoms ` K ) ) |
| 45 |
1 2
|
paddclN |
|- ( ( K e. HL /\ X e. S /\ Z e. S ) -> ( X .+ Z ) e. S ) |
| 46 |
3 8 11 45
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( X .+ Z ) e. S ) |
| 47 |
1 2
|
paddclN |
|- ( ( K e. HL /\ Y e. S /\ ( X .+ Z ) e. S ) -> ( Y .+ ( X .+ Z ) ) e. S ) |
| 48 |
3 4 46 47
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( Y .+ ( X .+ Z ) ) e. S ) |
| 49 |
5 2
|
sspadd1 |
|- ( ( K e. HL /\ X C_ ( Atoms ` K ) /\ Z C_ ( Atoms ` K ) ) -> X C_ ( X .+ Z ) ) |
| 50 |
3 10 13 49
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> X C_ ( X .+ Z ) ) |
| 51 |
5 2
|
sspadd2 |
|- ( ( K e. HL /\ ( X .+ Z ) C_ ( Atoms ` K ) /\ Y C_ ( Atoms ` K ) ) -> ( X .+ Z ) C_ ( Y .+ ( X .+ Z ) ) ) |
| 52 |
3 15 7 51
|
syl3anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( X .+ Z ) C_ ( Y .+ ( X .+ Z ) ) ) |
| 53 |
50 52
|
sstrd |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> X C_ ( Y .+ ( X .+ Z ) ) ) |
| 54 |
5 1 2
|
pmod1i |
|- ( ( K e. HL /\ ( X C_ ( Atoms ` K ) /\ ( Y .+ W ) C_ ( Atoms ` K ) /\ ( Y .+ ( X .+ Z ) ) e. S ) ) -> ( X C_ ( Y .+ ( X .+ Z ) ) -> ( ( X .+ ( Y .+ W ) ) i^i ( Y .+ ( X .+ Z ) ) ) = ( X .+ ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) ) ) ) |
| 55 |
54
|
3impia |
|- ( ( K e. HL /\ ( X C_ ( Atoms ` K ) /\ ( Y .+ W ) C_ ( Atoms ` K ) /\ ( Y .+ ( X .+ Z ) ) e. S ) /\ X C_ ( Y .+ ( X .+ Z ) ) ) -> ( ( X .+ ( Y .+ W ) ) i^i ( Y .+ ( X .+ Z ) ) ) = ( X .+ ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) ) ) |
| 56 |
3 10 44 48 53 55
|
syl131anc |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( X .+ ( Y .+ W ) ) i^i ( Y .+ ( X .+ Z ) ) ) = ( X .+ ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) ) ) |
| 57 |
42 56
|
eqtrd |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( ( X .+ Y ) .+ Z ) i^i ( ( X .+ Y ) .+ W ) ) = ( X .+ ( ( Y .+ W ) i^i ( Y .+ ( X .+ Z ) ) ) ) ) |
| 58 |
28 32 57
|
3eqtr4rd |
|- ( ( ( K e. HL /\ X e. S /\ Y e. S ) /\ ( Z e. S /\ W e. S ) ) -> ( ( ( X .+ Y ) .+ Z ) i^i ( ( X .+ Y ) .+ W ) ) = ( ( X .+ Y ) .+ ( ( X .+ Z ) i^i ( Y .+ W ) ) ) ) |