Step |
Hyp |
Ref |
Expression |
1 |
|
pmodl42.s |
|
2 |
|
pmodl42.p |
|
3 |
|
simpl1 |
|
4 |
|
simpl3 |
|
5 |
|
eqid |
|
6 |
5 1
|
psubssat |
|
7 |
3 4 6
|
syl2anc |
|
8 |
|
simpl2 |
|
9 |
5 1
|
psubssat |
|
10 |
3 8 9
|
syl2anc |
|
11 |
|
simprl |
|
12 |
5 1
|
psubssat |
|
13 |
3 11 12
|
syl2anc |
|
14 |
5 2
|
paddssat |
|
15 |
3 10 13 14
|
syl3anc |
|
16 |
|
simprr |
|
17 |
1 2
|
paddclN |
|
18 |
3 4 16 17
|
syl3anc |
|
19 |
5 1
|
psubssat |
|
20 |
3 16 19
|
syl2anc |
|
21 |
5 2
|
sspadd1 |
|
22 |
3 7 20 21
|
syl3anc |
|
23 |
5 1 2
|
pmod1i |
|
24 |
23
|
3impia |
|
25 |
3 7 15 18 22 24
|
syl131anc |
|
26 |
|
incom |
|
27 |
25 26
|
eqtr3di |
|
28 |
27
|
oveq2d |
|
29 |
|
ssinss1 |
|
30 |
15 29
|
syl |
|
31 |
5 2
|
paddass |
|
32 |
3 10 7 30 31
|
syl13anc |
|
33 |
5 2
|
paddass |
|
34 |
3 10 7 13 33
|
syl13anc |
|
35 |
5 2
|
padd12N |
|
36 |
3 10 7 13 35
|
syl13anc |
|
37 |
34 36
|
eqtrd |
|
38 |
5 2
|
paddass |
|
39 |
3 10 7 20 38
|
syl13anc |
|
40 |
37 39
|
ineq12d |
|
41 |
|
incom |
|
42 |
40 41
|
eqtrdi |
|
43 |
5 1
|
psubssat |
|
44 |
3 18 43
|
syl2anc |
|
45 |
1 2
|
paddclN |
|
46 |
3 8 11 45
|
syl3anc |
|
47 |
1 2
|
paddclN |
|
48 |
3 4 46 47
|
syl3anc |
|
49 |
5 2
|
sspadd1 |
|
50 |
3 10 13 49
|
syl3anc |
|
51 |
5 2
|
sspadd2 |
|
52 |
3 15 7 51
|
syl3anc |
|
53 |
50 52
|
sstrd |
|
54 |
5 1 2
|
pmod1i |
|
55 |
54
|
3impia |
|
56 |
3 10 44 48 53 55
|
syl131anc |
|
57 |
42 56
|
eqtrd |
|
58 |
28 32 57
|
3eqtr4rd |
|