Metamath Proof Explorer


Theorem plyrecld

Description: Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018)

Ref Expression
Hypotheses plyrecld.1 φFPoly
plyrecld.2 φX
Assertion plyrecld φFX

Proof

Step Hyp Ref Expression
1 plyrecld.1 φFPoly
2 plyrecld.2 φX
3 fvres XFX=FX
4 2 3 syl φFX=FX
5 plyreres FPolyF:
6 1 5 syl φF:
7 6 2 ffvelcdmd φFX
8 4 7 eqeltrrd φFX