Metamath Proof Explorer


Theorem plyval

Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion plyval SPolyS=f|n0aS00f=zk=0nakzk

Proof

Step Hyp Ref Expression
1 cnex V
2 1 elpw2 S𝒫S
3 uneq1 x=Sx0=S0
4 3 oveq1d x=Sx00=S00
5 4 rexeqdv x=Sax00f=zk=0nakzkaS00f=zk=0nakzk
6 5 rexbidv x=Sn0ax00f=zk=0nakzkn0aS00f=zk=0nakzk
7 6 abbidv x=Sf|n0ax00f=zk=0nakzk=f|n0aS00f=zk=0nakzk
8 df-ply Poly=x𝒫f|n0ax00f=zk=0nakzk
9 nn0ex 0V
10 ovex S00V
11 9 10 ab2rexex f|n0aS00f=zk=0nakzkV
12 7 8 11 fvmpt S𝒫PolyS=f|n0aS00f=zk=0nakzk
13 2 12 sylbir SPolyS=f|n0aS00f=zk=0nakzk