Metamath Proof Explorer


Theorem pm54.43lem

Description: In Theorem *54.43 of WhiteheadRussell p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 ), so that their A e. 1 means, in our notation, A e. { x | ( cardx ) = 1o } . Here we show that this is equivalent to A ~1o so that we can use the latter more convenient notation in pm54.43 . (Contributed by NM, 4-Nov-2013)

Ref Expression
Assertion pm54.43lem A1𝑜Ax|cardx=1𝑜

Proof

Step Hyp Ref Expression
1 carden2b A1𝑜cardA=card1𝑜
2 1onn 1𝑜ω
3 cardnn 1𝑜ωcard1𝑜=1𝑜
4 2 3 ax-mp card1𝑜=1𝑜
5 1 4 eqtrdi A1𝑜cardA=1𝑜
6 4 eqeq2i cardA=card1𝑜cardA=1𝑜
7 6 biimpri cardA=1𝑜cardA=card1𝑜
8 1n0 1𝑜
9 8 neii ¬1𝑜=
10 eqeq1 cardA=1𝑜cardA=1𝑜=
11 9 10 mtbiri cardA=1𝑜¬cardA=
12 ndmfv ¬AdomcardcardA=
13 11 12 nsyl2 cardA=1𝑜Adomcard
14 1on 1𝑜On
15 onenon 1𝑜On1𝑜domcard
16 14 15 ax-mp 1𝑜domcard
17 carden2 Adomcard1𝑜domcardcardA=card1𝑜A1𝑜
18 13 16 17 sylancl cardA=1𝑜cardA=card1𝑜A1𝑜
19 7 18 mpbid cardA=1𝑜A1𝑜
20 5 19 impbii A1𝑜cardA=1𝑜
21 fveqeq2 x=Acardx=1𝑜cardA=1𝑜
22 13 21 elab3 Ax|cardx=1𝑜cardA=1𝑜
23 20 22 bitr4i A1𝑜Ax|cardx=1𝑜