Metamath Proof Explorer


Theorem pmap1N

Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pmap1.u 1˙=1.K
pmap1.a A=AtomsK
pmap1.m M=pmapK
Assertion pmap1N KOPM1˙=A

Proof

Step Hyp Ref Expression
1 pmap1.u 1˙=1.K
2 pmap1.a A=AtomsK
3 pmap1.m M=pmapK
4 eqid BaseK=BaseK
5 4 1 op1cl KOP1˙BaseK
6 eqid K=K
7 4 6 2 3 pmapval KOP1˙BaseKM1˙=pA|pK1˙
8 5 7 mpdan KOPM1˙=pA|pK1˙
9 4 2 atbase pApBaseK
10 4 6 1 ople1 KOPpBaseKpK1˙
11 9 10 sylan2 KOPpApK1˙
12 11 ralrimiva KOPpApK1˙
13 rabid2 A=pA|pK1˙pApK1˙
14 12 13 sylibr KOPA=pA|pK1˙
15 8 14 eqtr4d KOPM1˙=A