Metamath Proof Explorer


Theorem pmapeq0

Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapeq0.b B=BaseK
pmapeq0.z 0˙=0.K
pmapeq0.m M=pmapK
Assertion pmapeq0 KHLXBMX=X=0˙

Proof

Step Hyp Ref Expression
1 pmapeq0.b B=BaseK
2 pmapeq0.z 0˙=0.K
3 pmapeq0.m M=pmapK
4 hlatl KHLKAtLat
5 4 adantr KHLXBKAtLat
6 2 3 pmap0 KAtLatM0˙=
7 5 6 syl KHLXBM0˙=
8 7 eqeq2d KHLXBMX=M0˙MX=
9 hlop KHLKOP
10 9 adantr KHLXBKOP
11 1 2 op0cl KOP0˙B
12 10 11 syl KHLXB0˙B
13 1 3 pmap11 KHLXB0˙BMX=M0˙X=0˙
14 12 13 mpd3an3 KHLXBMX=M0˙X=0˙
15 8 14 bitr3d KHLXBMX=X=0˙