Metamath Proof Explorer


Theorem pmap11

Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses pmap11.b B=BaseK
pmap11.m M=pmapK
Assertion pmap11 KHLXBYBMX=MYX=Y

Proof

Step Hyp Ref Expression
1 pmap11.b B=BaseK
2 pmap11.m M=pmapK
3 eqss MX=MYMXMYMYMX
4 hllat KHLKLat
5 eqid K=K
6 1 5 latasymb KLatXBYBXKYYKXX=Y
7 4 6 syl3an1 KHLXBYBXKYYKXX=Y
8 1 5 2 pmaple KHLXBYBXKYMXMY
9 1 5 2 pmaple KHLYBXBYKXMYMX
10 9 3com23 KHLXBYBYKXMYMX
11 8 10 anbi12d KHLXBYBXKYYKXMXMYMYMX
12 7 11 bitr3d KHLXBYBX=YMXMYMYMX
13 3 12 bitr4id KHLXBYBMX=MYX=Y