Metamath Proof Explorer


Theorem pmapat

Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses pmapat.a A=AtomsK
pmapat.m M=pmapK
Assertion pmapat KHLPAMP=P

Proof

Step Hyp Ref Expression
1 pmapat.a A=AtomsK
2 pmapat.m M=pmapK
3 eqid BaseK=BaseK
4 3 1 atbase PAPBaseK
5 eqid K=K
6 3 5 1 2 pmapval KHLPBaseKMP=qA|qKP
7 4 6 sylan2 KHLPAMP=qA|qKP
8 hlatl KHLKAtLat
9 8 ad2antrr KHLPAqAKAtLat
10 simpr KHLPAqAqA
11 simplr KHLPAqAPA
12 5 1 atcmp KAtLatqAPAqKPq=P
13 9 10 11 12 syl3anc KHLPAqAqKPq=P
14 13 rabbidva KHLPAqA|qKP=qA|q=P
15 rabsn PAqA|q=P=P
16 15 adantl KHLPAqA|q=P=P
17 7 14 16 3eqtrd KHLPAMP=P