Metamath Proof Explorer


Theorem pmat1op

Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p P=Poly1R
pmatring.c C=NMatP
pmat0op.z 0˙=0P
pmat1op.o 1˙=1P
Assertion pmat1op NFinRRing1C=iN,jNifi=j1˙0˙

Proof

Step Hyp Ref Expression
1 pmatring.p P=Poly1R
2 pmatring.c C=NMatP
3 pmat0op.z 0˙=0P
4 pmat1op.o 1˙=1P
5 1 ply1ring RRingPRing
6 2 4 3 mat1 NFinPRing1C=iN,jNifi=j1˙0˙
7 5 6 sylan2 NFinRRing1C=iN,jNifi=j1˙0˙