Metamath Proof Explorer


Theorem pmat1opsc

Description: The identity polynomial matrix over a ring represented as operation with "lifted scalars". (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p P = Poly 1 R
pmat0opsc.c C = N Mat P
pmat0opsc.a A = algSc P
pmat0opsc.z 0 ˙ = 0 R
pmat1opsc.o 1 ˙ = 1 R
Assertion pmat1opsc N Fin R Ring 1 C = i N , j N if i = j A 1 ˙ A 0 ˙

Proof

Step Hyp Ref Expression
1 pmat0opsc.p P = Poly 1 R
2 pmat0opsc.c C = N Mat P
3 pmat0opsc.a A = algSc P
4 pmat0opsc.z 0 ˙ = 0 R
5 pmat1opsc.o 1 ˙ = 1 R
6 eqid 0 P = 0 P
7 eqid 1 P = 1 P
8 1 2 6 7 pmat1op N Fin R Ring 1 C = i N , j N if i = j 1 P 0 P
9 1 3 5 7 ply1scl1 R Ring A 1 ˙ = 1 P
10 9 eqcomd R Ring 1 P = A 1 ˙
11 1 3 4 6 ply1scl0 R Ring A 0 ˙ = 0 P
12 11 eqcomd R Ring 0 P = A 0 ˙
13 10 12 ifeq12d R Ring if i = j 1 P 0 P = if i = j A 1 ˙ A 0 ˙
14 13 adantl N Fin R Ring if i = j 1 P 0 P = if i = j A 1 ˙ A 0 ˙
15 14 mpoeq3dv N Fin R Ring i N , j N if i = j 1 P 0 P = i N , j N if i = j A 1 ˙ A 0 ˙
16 8 15 eqtrd N Fin R Ring 1 C = i N , j N if i = j A 1 ˙ A 0 ˙