Metamath Proof Explorer


Theorem pmat1ovscd

Description: Entries of the identity polynomial matrix over a ring represented with "lifted scalars", deduction form. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p P = Poly 1 R
pmat0opsc.c C = N Mat P
pmat0opsc.a A = algSc P
pmat0opsc.z 0 ˙ = 0 R
pmat1opsc.o 1 ˙ = 1 R
pmat1ovscd.n φ N Fin
pmat1ovscd.r φ R Ring
pmat1ovscd.i φ I N
pmat1ovscd.j φ J N
pmat1ovscd.u U = 1 C
Assertion pmat1ovscd φ I U J = if I = J A 1 ˙ A 0 ˙

Proof

Step Hyp Ref Expression
1 pmat0opsc.p P = Poly 1 R
2 pmat0opsc.c C = N Mat P
3 pmat0opsc.a A = algSc P
4 pmat0opsc.z 0 ˙ = 0 R
5 pmat1opsc.o 1 ˙ = 1 R
6 pmat1ovscd.n φ N Fin
7 pmat1ovscd.r φ R Ring
8 pmat1ovscd.i φ I N
9 pmat1ovscd.j φ J N
10 pmat1ovscd.u U = 1 C
11 eqid 0 P = 0 P
12 eqid 1 P = 1 P
13 1 2 11 12 6 7 8 9 10 pmat1ovd φ I U J = if I = J 1 P 0 P
14 1 3 5 12 ply1scl1 R Ring A 1 ˙ = 1 P
15 7 14 syl φ A 1 ˙ = 1 P
16 15 eqcomd φ 1 P = A 1 ˙
17 1 3 4 11 ply1scl0 R Ring A 0 ˙ = 0 P
18 7 17 syl φ A 0 ˙ = 0 P
19 18 eqcomd φ 0 P = A 0 ˙
20 16 19 ifeq12d φ if I = J 1 P 0 P = if I = J A 1 ˙ A 0 ˙
21 13 20 eqtrd φ I U J = if I = J A 1 ˙ A 0 ˙